silicon nitride balls in china

Silicon nitride (Si3N4) was developed in the 1960s and ’70s in a search for fully dense, high strength and high toughness materials. A prime driver for its development was to replace metals with ceramics in advanced turbine and reciprocating engines to give higher operating temperatures and efficiencies. Although the ultimate goal of a ceramic engine has never been achieved, silicon nitride has been used in a number of industrial applications, such as engine components, bearings and cutting tools.

Silicon nitride has better high temperature capabilities than most metals combining retention of high strength and creep resistance with oxidation resistance. In addition, its low thermal expansion coefficient gives good thermal shock resistance compared with most ceramic materials.


1Types of Silicon Nitride

Since the material properties strongly depend on the fabrication method, silicon nitride cannot be considered as a single material. The three main types of silicon nitride are:

Reaction bonded silicon nitride (RBSN)
Hot pressed silicon nitride (HPSN)
Sintered silicon nitrides (SSN)
Reaction bonded silicon nitride is made by direct nitridation of a compacted silicon powder, and because of the difficulty of ensuring complete reaction, it is hard to achieve a high component density. Usual densities are in the range 2300 – 2700kg.m-3 compared with 3200kg.m-3 for hot pressed and sintered silicon nitride. The higher density gives the HPSN and SSN materials better physical properties and means they are used in more demanding applications. The nitridation produces only a small volume change, which means that RBSN components do not need to be machined after fabrication and complex near net shapes can be produced in a single process stage.

Key Properties
Applications exploit the following properties of silicon nitride:

low density
high temperature strength
superior thermal shock resistance
excellent wear resistance
good fracture toughness
mechanical fatigue and creep resistance
good oxidation resistance
The material is used currently in niche market applications for example in reciprocating engine components and turbochargers, bearings, metal cutting and shaping tools and hot metal handling.

Material Analysis
Grade Allowable Lot Diameter Variation Basic Diameter Tolerance Allowable Ball Gage Deviation High Allowable Ball Gage Deviation Low Max. Surface Roughness. Arithmetical Average. Micro-meters (Micro-inches)
2C 0.08 (3) ±0.51 (±20) +0.51 (+20) -0.51 (-20) 0.004 (0.15)
3C 0.13 (5) ±0.51 (±20) +0.51 (+20) -0.51 (-20) 0.004 (0.15)
5C 0.25 (10) ±0.76 (±30) +0.76 (+30) -0.76 (-30) 0.005 (0.20)
10C 0.51 (10) ±2.54 (±100) +1.27 (+50) -1.02 (-40) 0.006 (0.25)
16C 0.80 (32) ±2.54 (±100) +1.27 (+50) -1.02 (-40) 0.009 (0.35)
24C 1.22 (48) ±2.54 (±100) +2.54 (+100) -2.54 (-100) 0.013 (0.50)
48C 2.44 (96) N/A N/A N/A 0.013 (0.50)

Send your message to us:

  • * CAPTCHA: Please select the House

Post time: Mar-10-2020
WhatsApp Online Chat !